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ABSTRACT
Let A be the mesh in the plane obtained from a uniform square mesh by

drawing in the north-east diagonal in each square. Let ﬂ: A be the space of
’

[ T )

bivariate piecewise polynomial functions in Cp, of total degree € k, on the
mesh A. It is demonstrated that the controlled approximation order from the
linear span of all the box splines in "z,A is

(1) 2k-2p if 2k=3p = 2

(2) 2k=-2p-1 if 2k-3p =3 or 4

(3) kx+1 if p =0

(4) min{2k-2p-2,k} if 2k-3p > S and p > 1 .

Thus the controlled approximation order problem is solved completely.

AMS (MOS) Subject Classifications: 41A15, 41A63, 41A25
Key Words: box splines, bivariate, controlled approximation order, pp, jump,
quasi-interpolants, smooth, spline functions.
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}:«3 SIGNIFICANCE AND EXPLANATION
AR
o
>, - This report continues the study of approximation by bivariate smooth
O]
(R '
:;: splines on a three-direction mesh. 1Initiated by de Boor, DeVore and H8llig, .
k 'c‘:\ :
N box splines have proved useful in determining the approximation order from
o certain spaces of bivariate splines. By using box splines, de Boor and HBllig
Al i
ﬁi{f gave a sharp upper bound for the approximation order, and Jia got a sharp )
‘- 9
L lower bound for it. But there is still a gap between these two bounds. While )
{
3
RS determining the exact value of the approximation order is still a formidable
K )
:F problem, Dahmen and Micchelli consider the so-called controlled approximation {
- order from certain spaces of bivariate splines. In their study, Dahmen and )
{
S
._::. Micchelli use a characterization result of Strang and Fix concerning
:f controlled approximation. However, the result of Strang and Fix has been )
4 9
A
AN shown to be not true in their original sense. After adjusting the definition ;
4 A
s of controlled approximation order suitably, in another report, we obtain’the
33?: desired characterization property for controlled approximation by box splines. ;
AKX}
ke 1
S? Hereafter -we shall refer to controlled approximation in the latter sense. !
A <, In this report; we determineygompletely the controlled approximation
w .
e ’
a j order from the span of all box splines of any given order and smoothness.
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f-: ON THE CONTROLLED APPROXIMATION ORDER 5
:::; FROM CERTAIN SPACES OF SMOOTH BIVARIATE SPLINES .i‘
( . Rong~Qing Jia a
.ﬂs ) In this paper we study the controlled approximation order from certain

35% . spaces of smooth bivariate splines on a three-direction mesh. The work in

i this respect was initiated by [BD] and [BH,_;], followed by [DM,_,] and
..5‘:' (342500

5;3 Following [BH3] we first introduce some notations. let

>4 A= U {xeR x(1) =n, x(2) = n, or x(2) - x(1) =n} .

Lﬁ nes \
% )] In other words, the mesh A 1is obtained from a uniform square mesh by drawing 5
:3 in the north-east diagonal in each square. Llet i
i:_ S := “:,A LS c? ?
,Ej be the space of bivariate pp (piecewise polynomial) functions in Cp, of 3
;:g . total degree € k, on the mesh A. Also, we denote by LY the space of
‘*: polynomials of total degree < k, and by n the space of all polynomials.

,:5 ' We are interested in the approximation order m of §S. 1In the case

'? p > (2k=2)/3, the approximation order is m = 0 (gee [(BD]). In the case

¢§ p € (2k-2)/3, it is known that

S m(k)=2 € m € m(k) ,

}: where m(k) := min{2(k=p), k+1} (see [BH3] and [32]).

;; While determining the exact value of m is still a formidable problem,

'

ﬁ;i [DH2] discuss the so-called comntrolled approximation order. This concept has

.? been introduced by [S]. Here is the setup: Given a collection
:;' . o = {¢1,...,0N} of cértain locally supported functions on R, we want to

g

3

T Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This

material is based upon work supported by the National Science Foundation under
Grant No. MCS-8210950.
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® n
find, for any f € C (R') and any h > 0, a nonnegative integer m and N

multivariate sequences w: e zn + R (i=1...,N) such that
N . h . m (m) B
(1) £ - 121 ) wi(j)¢i(i = 3N, < const h™ Nf "1
jez"
and
2 ] h )1 < ] =
( ) wi( ) P Const.lf © (i - 1,0.0,“) .

The largest value m with the above property is called the controlled
approximation order of &. A characterization result for controlled

approximation order has been stated by [FS]:

Theorem A. $ = {¢1,...,¢n} has controlled approximation order bigger

than m if and only if there exists a linear combination B of

¢1,...,¢N and their translates for which the map

T:pw» )  p(j)B(e=9)
jer”

is degree-preserving on lmm

Remark. A map T 1is said to be degree preserving on LI if for any

p e 'm' Tp-p has degree less than deg p. Let S; be the shift operators on
L
S;p = ple-e,) (1 =1,2) .

If T commutes with si(i = 1,2), then T is degree preserving on nm if
and only if T is a bijective map from LI to ﬂm.

Recently, however, [33] produced a counterexample to Theorem A. This
suggests that we should adjust the definition of controlled approximation
suitably. We note that [Dle quote Theorem A in a different way. They
require that the coefficients of the approximation be boundable locally. It

turns out that if the requirement of (2) is replaced by

(2') There exists a positive constant R independent of h

« DA ACRR T ST T PR B
TR T )

"_\\-"...'.‘.-._-_»' .
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3 !
‘
‘ﬁf such that
ﬂ h
N dist(jh, supp f) > R implies that wi(j) =0(i=1,...,N),
¥y - then Theorem A holds for any collection % of box splines (see [J4]). ’
X :
21 Hereafter, we shall refer to controlled approximation in the latter sense. .
NS -
L We are interested in the case when ¢ consists of all the box splines .
;” belonging to ﬂ: A® We adapt the definition of box splines to suit our !
) ) 3 +8+
e discussion. For (r,s,t) e z+, let = := (Ei): s+t be R
the sequence given by p
X = = i
- By Teeem B Ty 1= (100, *
A
o £ = ..% £ - := (0,1)
. r+41 0T Sreg T %2 P
b Y
and frratt T T Brign =& i (WD)

Then the box spline M. := “r,s,t is defined as the distribution given by the

SRR

rule:
' j (r+§+t )
M : o » $ A(L)E Jar
o r,s,t [0'1]r+s+t i=1 i
o (see [BH,]). Let
- * %0 2T Mret! Mre,e € "ka’
§§ By ;(k,p) we denote the controlled approximation order of Ok 0° It is
E ’
; known that
¥$ .
g (1) (see [BH{l) m(k,p) = Zk=2p 4if 2k=3p = 2
% (11) (see [DMy]) m(k,p) = 2k-2p-1 if 2k=3p =3 or 4 .
X -
: $ If we denote by m(k,p) the approximation order of ni A’ then
r
! ~ -
}‘-’m m(k(p) < m(k'p) .

N In the case 2k-3p = 2, [BH1] point out that
2k-2p = p+2 < m(k,p) = m(k,p) = p+2 .
Nevertheless, we must be careful in distinguishing the controlled approxi-

mation order from the approximation order. Indeed, we shall see that

ot gﬁ&ﬂi%ﬁéﬁil'
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ig m(5,1) = 5 < m(5,1) .
‘ We will discuss this matter in more detail later.

-
e A A% W RV VL g P

‘ In this paper we determine E(k,o) completely. Our main result is tlat .
259
S ~
: (iii) m(k,p) =k + 1 if p =0 .
".3 (iv) ;(k,p) = min{2k-2p-2,k} if 2k-3p > 5 and p > 1 .
(Recall that m(k,p) = 0 4if 2k-3p < 1).

i‘ More generally, let & be a collection of bivariate box splines:
3N

{
el  ={m; ueul
PN with
N 3
3 U c {(r,s,t) e 2°; r,s,t > 0, min{r+s,s+t,t+r} > 1} .
DO
“ Then
gf M eL for uevu .

u =

LY
-y Whenever convenient, we refer to the three components of u €U as r,s,t,
w?t*
X
%} respectively.

The following theorem gives a criterion for the controlled approximation

;:2; order of 9.

Bgé Theorem 1. let

' Q|ll sm= {(q1.q2) e "2, 9 + q, < m+1} .
'5"1 Then ¢ = {Muy u € U} has controlled approximation order > m if and only if
~ I—

v

xh there exists a mapping b: K + R such that

B~ (1°)m ), b =0 for any q,s,t with (q,s+t) € Qm ]
o r>qg

a“‘ll

el o -

x}?} (2 )m s%qb 0 for any q,t,r with (q,t+r) e Qm 7

! (3°)m ), b = 0 for any gq,r,s with (q,r+s) eQm :
to>q

(4°) ) b, A0 .
uev

-f-
N
O ’* » v ‘.\ ""J'" '..-'..'. -'.’
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We notice that (1°), (2°),, and (3°)m imply that

(5°)m bu = 0 for any u = (r,s,t) with r+s+t < m .
Indeed, if ue€ U, thenoneof r, s and t is nonzero, say, r ?» 1. Now
assume that r+s+t < m, Then r < m-1, for otherwise s =t = 0, contra-

dicting that u @ U. Thus (r,s+t) and (r+1,s+t) e On? hence (1°)m implies

that
Y » =0 and ) b =0 .
A>r A,s,t A>r+1 A,8,t
Therefore
b = ) b - ) » =0 .
LI A,s,t AL+ A,s,t
Before proving Theorem 1, we need to introduce some notation. Recall
that
e, = (1,0), e, = (0,1), e, = (1,1 .
Let

Vif = f‘f("ei) .

i.e., Dy is the partial derivative with respect to the i-th component,
i=1,2, and 03 = D1+Dz. It follows from [BH1] that, for any function
as zz + R, we have

o, () atpmM(e-) = ) Via(j)ME\ei(°-j) if e €3 .

jex® jex

2
We define, for any function £ : R\A + R, and for x € R\Z,

jump1 f(x) := lim [f(x,e) - f(x,-€)]
€40

jumpz f(x) := lim (f(e,x) = f(~-g,x)]
€40

jump, f£{x) := 1lim [f(x-€,x+e) - f{x+e,x-€}] .
3 €40

Thus, as a function from R to R, jump, f represents the jump of f across

v -
s
a m’a

0 AU

RO KRR ] CEr
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1

X

_:‘:_: the x1-axis. For jump, f and jumpy f, we have a similar interpretation.

Lk

~'&' with 3 = (34,3,) € zz, one easily verifies the following formulae:

:_'_:.:: = Mr(x-31) if i, = 0; r >0, and s+t = 1 ;

e

et = M (x-3,~1) if j, = -1 r > 0, s =0 and t = 1 ;

-l R r 1 2

IR (3) jump‘ Mr s t('-J)(x) .
Xy e =M (x-j,) if j, = =1; r > 0, s=1andt =0 . ‘

r 1 2

.J:;,:: = 0 otherwise .

£ ]
\_S.t Here M_ 1is the univariate B-spline of order r at a uniform mesh: X
\--,“. 1
A r-1

. Mr(x) = r[o'onn'r] (.-x)+ S
A

. For jump, and jump3, we have similar formulae.

s ¢
N The proof of Theorem 1. :
e If ¢ = {Mu; u € U} has controlled approximation order > m, then by ;
Ak

e Theorem A, there exists B, a linear combination of M, and their

‘:j‘:l translates:

o :
..".-' (4) B = }‘ ): au iMu(.-i) i
i ueu ier '

b a

;::j (here 1 is a finite subset of z2) such that the mapping

oy

2 »-
AN T:p* ) p(HB(*=3)

’ 2

jez

o

J.'-" is degree-preserving on LI Set
oY (5) b o= § oa -
L ieI !

AN We claim that b satisfies (1°)m, (2°),,, (3°)m and (4°). To this end we

.,".":

:f::-l shall prove

w0

ALY
" (1°) ), b = 0 for any q, 8,t with s+t <q2 and 1 ¢ 1, < m+i-s~-t
AR mlqz r>q u

3 1

‘.‘."'.4

":;:‘ by induction on q5. Then “o)m,m ias just (1°)m. Notice that (1")“"0 holds
10y

. vacuously. Suppose that (1%) is true (q2 < m). We want to establish
q—— mlqz
)
(1 )“"qz”' Consider

-6=
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I' ~ LY
oy .
) .
&‘ -
N ¢
32 . a1 q2 . . 4
Ve jump (D, (Y pl(HB(s=-iN] ,
Y
‘;\. Jezz
{ : vhere (qq,,) € Z> with > 1 a + < d en si )
::\j Q1l 12 + q1 an q1 q2 m, an P q1*q2- nce .
"\j ) p(3)B(*=j) 1is a polynomial, we have :
v 2 N
ez .
,:‘5 3 1-1 q2 .
(6) jump (D, (% P(HBC=3N) =0 . :
o sen” ;‘
N On the other hand, (4) yields that >
"::f -1 q :1
1 2 °
. (7)  jump, (D, ()  p(B(-3))] F
v jezz 3
"y A - L
I"‘g ‘;
= _ q,~1 q2 b
=) )} a  {jump (D, (Y pIM_(=-1-30)1) . X
veu jer Ut ! u ?
1 Ja '
A ~
:.:: We now evaluate A
T _1 ]
o~ 1
N 3 o= yump (o, ' 0,%(] pOIM_ _ (o-1-3001 . ]
, ! j TeSot 3
\_v" n
7 If q,>r, then ]
b q,-1-r . §
gt 1 2
3 J = jump, [D, <)(V1p>um L=l =0, y
) y
» since, by (3), Jjump, Mo,s',t' = 0, whatever s8', t' might be. If a, < r, I
4 then X
4“1 4 \
W 1
~ q1-1 q2 —1 :
Ny D, (% P(IIM_(+=1=3)) = n (g (v p)(j)Mr_q1+1's't(°-i-j)) . 5
::-:: There are two subcases: q, < 8 and q, > 8. If q, < 8, then
\.-l
S q,~1 q
R . 1 2
::} J jump1(% (V1 v2 p)(jmr-q1+1,s-q2,t( - .
By (3), J #0 only if (s-q,,t) = (0,1) or (1,0). We have, for
.ii (S’qut) = (0’1)' that
'
(Y
]
o -1-
KT
:.:;';a:.-\'t‘..-',.~:;’..: ..; "q' . \. ‘.-_:,-.:.- R R . . N P T A L N LT
> rolales L e e -Z‘.*. S

'y 'f«'- o . AR ) \." A AN N e N A

LN ) U LR S SR O A ?: 2
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N W

. A

-1
3 = jump,( ) 2(V11 Vq P)(3M_ q1+1'0'1(--1-j))
jez
= ) (Vq1-1vq2V p)(im (e-i-j) ,

j1a 1 3 r—-q.,+1

-1 q
by (3). Since p e “q1+q2' V1 2V3p is a constant. Thus
q,-1 a,

J =V V,V.p for (s,t) = (q2,1)

1 2 3

Similarly,

9, 9,

3= 1v p for (s,t) = (q,+1,0)

and q1<r .

and q, <r .

Let us now consider the case qy > s In this case

-i-3))

q, q1-1 q2-s -1
y s—fj- = v v .
D, (} R Pt (%( 2p)(j)Mr_q1+1'o't(
By the binomial theorem,
q,-8
q.-s q.-8 2 q,~8-n q,~s8 g,-s8~n
2 2 . 2 2 2 n
D,° = (DD, = ) (=1) - o, Dy -
n=0
Invoking (3) again, we see that
q.=s-n q,-1
2 n,y 1 8 oeid o

jump, D D-’—‘% Ty TRIOIM g yq,0,e 1 TETIN) # O
only wvhen n = t-1 and q,-8-n < r-q1+1. Also, we have, for
n=t-16€ [0,q2-a] and qy-s-n < r-q1+1, that

q.,-s-t+1 q.-8 q_-s-t+1 q,.-1
2 2 t-1 - 1 s
3 = Jump,((-1) (¢oq oy (L @y vm
jex
"r-q1+1,o,t(°°i'3))]
. (-1)q2-s—t+1 qz-s)vq1+q2-s-tvsvt
t=1 /"1 29
If we interpret (-:) as 1, then the above results can be summarized as
Y-
A
' ﬁ . -

AN




|£E =19,

u Jump1[D D, () plHHBl=3n1 ,
.\

- jez?

2

. where (q.,q,) € z, with a, > 1 and a, + a, <{m, and p € “q1+q2' Since
\i X p(j)B(*=-j) is a polynomial, we have
.1 . jezz ’
-" q1- q2

(6) jump, (D, () pHBCe=3N) =0 .
o jez?
b On the other hand, (4) yields that
..-
N q,- q2

(7)  jump, (D, (Y p(HBC=3N]

jez

)

I
RRAAR

. q,-1 q2
=) ) oa i{jump1[D ()l p(3m (c-i-3001} .
uev ier ' jezz

AR

We now evaluate

s b
YAy

9,~1 q2

J = jump, (D, (% PUIM, o (e=i=3N)] .

! I‘:".."

.

‘l

Ll

If qq>r, then

._} A

]

Q-tra . .
3 = jump, (D, D, (%(V1p)(j)Mols't('-i-J))] =0 ,

since, by (3), Jjump, Mo,s',t' = 0, whatever s8', t' might be. If a4, <r,

o,

oy
)
IR

e

~ then

o2 q,-1 N a,-1

\' 1 2 L ] - ey =

w D, (% p(IM_ (==i-3)) n () (v P, 416,670
Y There are two subcases: q, < g8 and q2 > s. If 1, < s, then

A . a.,~taq

£ 3 = gump () (7,7 %prcsm
o) 3

By (3), J # 0 only if (s-qz,t) = (0,1 or (1,0). We have, for

r-q1+1,s-q2,t(°'1‘j)) .

N (s-q,,t) = (0,1), that

v, 4 .
I o f\r J'a
o # ,\a%fQ!r x

L
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55

N

RS
e

v}

4
A

)
_ a,-1q, .
3 = jump () 2(\71 v p)(J)Mr g #1,0,10° 7473 ‘
jez .
) vq'-1vq % :
= ( pl(jM (e=~i-3) , .
j1ez 1 3 r-q1+1 4
by (3). Since pen v 1 v 2V is a constant. Thus
ata,’ 1 2 3P
J = V1 V 2V p for (s,t) = (q2,1) and q, <r .
Similarly,
T4_92

J = V V p for (s,t) = (q2+1,0) and a, <r .

Let us now consider the case q, > 8. In this case

1, .. q1-1 9,78 -1
D, (% v, P’(”"r-q1+1,s,t"'1"” - D, (% (v Vzp)(j)Mr_q1+1'o't(o-i-j))
By the binomial theorem,
q.-8
q,"8 q,-s 2 qz-s—n q,"s qz-s-n n
D,° = (D,-D) = ) (~1) ( . )D' Dy -
n=0
Invoking (3) again, we see that
q,=8-n q.-1
2 n,y 1 8
jump, D, 03(§ Ty TP OM 0, i) F O

only wvhen n = t~1 and q,-8-n < r-q1+1. Also, we have, for

n=¢t-1e [0,q5-8] and qy-8-n < r-q1+1, that

q.-s-t+1 q_ -8 q_~s-t+1 qg.-1
2 2 2 t-1 - 1 ]
J = Jump, [(-1) (t_1 )D1 Dy ( ) 2(v1 V,P)(3)
jex

M (+=i-3))]

r-q1+1,0,t

. (-1)qz-s-t+1(qz-s)vq1*q2-s-tvsv
=171 2’ ¥

_1) as 1, then the above results can be summarized as

If we interpret (

Rt

so.'x\l‘n )
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A,

o,

&

.
ReERz

T4

q,-1 a,

jump, [D," D,°C } p(3M (+-i-3))]

2
(8) Jez
q,~s-t+1 q -8 q +q_-s-t
R A U

and 0 otherwise. Now (7) becomes

q-=rta, _
(9)  Jump,(p,” D,°C ] p()B(e=3))]
jen’
) q2+1-s-t qz-t q1+q2-a-t s_t ‘
Lo e-1 )7 AN
s+t<q, +1 ier
+8+
r+s t>q1+q2
. q2+1-s-t qz-t q1+q2-s-t s
) btV s-1 v, v’
s+t<q, +1 ree
r+l+t>q1+q2
Comparing (9) with (6) gives
q,+1-8~t q .-t q +q_ -s=-t
(10) I on? 2w e
s+t<q2+1 r>q1+q2-s-t
o
If s+t < qz, then (1 )m’qz gives
) b =0 .
r>q +q, -s-t v
172
q2+1-s-t qz-t
Moreover, s+t = q,+1 implies that (-1) (5-1 ) = 1,
becomes
: q,-1 :
(11) y v, Bip(] b)=0 .
s+t=q,+1 r>q,
For given (so,to) with 8ptty = q,+1, there exists P e

ST, P 0 T
RSN
AL Y o o S ST

O E L R A AN
N LV P RN

“

u,i

t
3P

2

Therefore, (10)

q.,+1

St
V2V3p for s+t < q2+1 and r+s+t > q,*a, .

such that

B CPCBE

NP4 DR N

Rlalalo a’s s A MMR AL A SOl oL
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-

RSN, PPV,
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v;vgp =1 for (s,t) = (s,.t,)

AN
AL

~

=0 for s+t = q2+‘l but (s,t) # (Bopto)

S 4 SRR

b t s
"‘ 0 0 ~
2.4 (e.g., choose P(x4,Xx;) := x, (x2 x1) /soltol). Then we can find ’
y N .
[ q,-1 .
penr so that V p = P. Now (11) yields that 5
q,+q 1 g
1 2 . b
L ). b t =0 . .!
bt
'i’ This proves (1°)m,q2+1' By induction, (1°'m has been proved. The proof of
N (Zo)m and (30)!! is similar. As to (40), gince T : p* ) p(j)B(*-3) is
¥ 2
»
.fg degree-preserving on LI L have jez
XY .
N I Ble-3) A0 .
FN] 2
) - 1
i But 3
7!
éﬂ Y B = § ) oa ) me-d)
:;:1 j az uev iex 3 ezZ
2N . : .
| =1 ) T ) b, °
3 uev jer ueu
', This proves (4°).
3
Eﬁ Conversely, suppose that (1°)m, (2°)m, (3°)m and (4°) hold. We want to

construct a linear combination B of Ht,s,t and their translates such that

<]

2 T:p+ ) p(3B(=3)

L)

o jen2

S

-— is a degree-preserving map on 'm' Note that after multiplying by an

2z§ appropriate constant, we may assume

L .

Yot ! bo=1 . ,
31 uev ° ~

Recall from [le that there exist constants a, d_1(l = 0,1,60.,48-2)
[

) <,

; such that for any polynomial f of degree < d-1,

s

2 ; 3 enr(T )
== £(4)M =) gu)() a M. (s42)
‘A.: ies i,a-1 jex 1=0 L£,4-1 14,4

c o g e e e e AT A A
R\..\- I DA .-’af.'_‘.-ffj"‘?)‘
. i B - Ld L] » - ". -

1 ‘Z"' RC LA, o,

VO N TR



i q -, ) g ™ —
BECAR TSR AR RS A A T O L i HRARAIEAI N AC I S I e o i i pe ki v ke e S Dte e S

4
/

’
A

where Mi,d is the i-th B-spline of order a:

da-1
Mi,d(x) = d[i'o"'1+d](.-X)+ [

| DRSRN a PL

A 4
-

(see [er Lemma 1]). We define Bu in terms of these a as

. ri1 ii‘l s=1 j=1 ti1 ki1 [r-1 s-1 t-1
B (x_,x,) := ), ' n a T a . T a x
- w2 1=0 ;=0 3=0 ¥ =0 k=0 v, =0 ix1 Mrdogog Hyed gay ik
", ( ri1 t§1 si‘l t)-:‘l ]]
- M (x_ + A, + ) v, x, ¢+ u, + v, .
s WUl gm0 ! ke K2 gmp 3 xmo K
: ) These Br, s,t have the following property:
1, Lesma (cf. (J.: Lemma 2]). For any bivariate polynomial p of degree
s
:-:: < r+s+t, we have
" r s ~ ~ .
N (1) DD, 0 )} P(HCY b 4B ,(=3)) =0, if ) b =0
2 At At
jez
o
’."' rot ) ) o= = ) =
[ (1) oot ] pHCL b B (=] =0, if } b o, =0
o 2 A)s A>s
. jex
"‘ 8.t ) ' [T = ) =
(111) D,D. [ } , p(j)(xzr by e,tB1,s,e( ")) = 0 Af Xgr by gt =0 -
a) jes
?*! Proof. Since 2 b = 0, summation by parts gives
] At .8,

3
A)it brplplnrm:x - z%t(xzt brllix)(ntl.'l- Br"lz"") )

BY [Jz' Lemma 2], Y

\ r 8r v o -
P y05[ ) LSRR L N)=o0 X
for any polynomial p of degree < r+s+f. This proves (i). One proves (ii)

CS and (iii) in the same way.

NG In the following construction we use only those M, for which
, % r+s+t > m. In other words, we may assume that u € U implies

-

N r+g+t > m. let

’n

¢

o

»
¢ ~ -11-

-
*ﬁ.">¢"‘.r‘.f‘f%f “xt."' L f‘.f‘w' DN ol % P AT A -_.8 . w
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v
e
T B := ) b B, -
oY uev
::: We claim that
- T:p+ ) p(3B-3)
3 ol
:Ef is a degree-preserving mapping on 'm' As we did in [Jz; Lemma 4],
2 we first prove that T carries "n into wm by showing that

338
e 94 9
N 12 1 2
n (12) 21 p(3)B(+-1)] € 7
A 1 0
2 3
‘a for any (q,,qz) e 22 with g +q, = degp<m .
AN
.l
i, Let

E, = {fueu; r> q, and s> qz}
5

= < <

E, : {fuevus r q, and s qz}

E, := {fueu; r < q, and s> qz}

E, := {ueu; r» q, and s < qz} .

To prove (12), it suffices to show that

9, 9
A8 o,'0, %1} p(3) § b3 (+-1) ewy
e - 3 veE,

for each i = 1,2,3,4.

24
\ﬁ; Case 1 = 1. 1In this case, r > q, and s8> qay¢ hence

%5; q., g9 q, 9 q, 9

oL

? 172y el = S 9l 2 . 12

D, D, [} P(IIM (+=5)] =} 9.7, POM, o o) =9, 9%,

LA ) 3 1 2

% 9292

% since V1 Vz p(j) is independent of j. Moreover, Br,s,t is a linear
;t

o combination of "r,s,t and its translates; therefore

’.Hé
A q, . .

b o, '0._21) p() ) b B (*=~j)] = const.

4% 1 2 uu

i (r,-,t)ez'

"""‘*‘ Y\"w\.
\ ‘*\w‘e*a‘a i ,\-Q*\ At o (‘{ N
N YA ~~'n~ X
et IO I,'"? ?.j_:f N
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Case i = 2. In this case, qqtq, € m implies that r+s € m; hence

t > 1. Thus X b = 0 by (2°)m, and therefore by the lLemma we have
€31 r,s,t
q q

2 .

[) p(3) ) b (¢=3))
(r,s,t)eEZ r,s, t r,s,t
. 1 2 rs v :
= ) o' p® o ) » Y pt3) B (e=9)] =0 .
r<q' 1 2 172 £>1 r,s,t 3 r,s,t
s<q2

Case i = 3. In this case (see (J2)}),

(13) qq,

r. t p'p®
Dy Py = DP3f e * D405 4
t=-1 q.,~r=L q.,-r q,q,~r=-L
. 1 1 L7172
+ Dﬁ[ ¥ (-1) . )0302 1 .
t=q +q, ~r=8+1
1 72
where “r,t and Gr,- are polynomials in D, and D,. Furthermore,

Hr,t =0 for r+t > a,

Gr,s = 0 for r+s > q1+q2 .

Denote by Au the third term on the right-hand side of (13). Since
q1*q2-r--+1 € 2 < t-1 implies that ¢ > ¢ and s > q1+q2-r-l, we have

Aut[} P(3)B (==3)] e n, .

Thus, by the lemma, the hypotheses (1°) (2°)m and (3°)m of Theorem 1

nl
yield
q, q
p,'0,%t) p(1 ) BB (-]
3 ue!3
= Y » (0103n + D1D2G + A M) p(IB (+=3)]
ueE, p]
= ) = ) b YB (e-3)
t+t<q1 r,t 1 3 '>q2 u 3 u
+ ) G ’D:D;[ ) b ) B (e=3)] + const e %, .
r+sdq,+q, T t>q,+q,-r-s vy
8>q,
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tf} Case i = 4. The arqument is similar to that in the case i = 3.

WSAS
't{: We have proved (12), and therefore conclude that T carries LI into

. q, g
(. ® . To finish the proof, we observe that for any p €& n .V 1V 2p is a
‘.:A'.: m q1‘.q2 1 2

4i:' constant, therefore

N

L

R q, 9 9, g9 .

N 1.2 : 1,72 .

- v, v, -1 = 2 P(INY, Y, B(*=3)) ;
T J

-

i

) q, 9 q, g9

- - 1,°2 . 1,2

DNy =) (V. V. P)(§)B(e=§) =V _9.“p .

B 1 2 1 2

i j
13 This shows that p and Tp have the same leading coefficients, hence p - Tp
L

A
’sju is a polynomial of degree < deg p. This completes the proof of Theorem 1.

Corl'n
3 \‘:\.
PO Now we are in a position to prove our main result.

PR

= Theoxrem 2 The controlled approximation order ;(k,p) of Qk 0 is

-, e ’ -

K

=it (i) 2k = 20 if 2%k=3p = 2

e (11) 2k=2p-1 4if 2k=3p =3 or 4 ;

ER o
i (ii1) k+1 4f p =0

vt
Fadsl

T (iv) min{2k-2p-2,k} if 2%-3p > 5 and p > 1 .

LY

I
1*j; Proof. Although (i) has already been proved by [BH,], and (ii) has
e already been proved by [Duzl, we still give a proof for them to illustrate our
A

:{5 method.
AN

‘Pt
AZ{E If 2k-3p = 2, then p = 2u=-2 for some integer u and k = 3u-2. Thus
- M € n° is equivalent to u = (u,u,u). For m = 2u~1, we choose
QN u k,A
i\jﬁ bu wou = 1, This b certainly satisfies all the hypotheses of Theorem 1.

\.\:, (A4
'\’ ' o
ed But, for =2 1 b = 0. Hence ¢ = (M } ha
A ‘ » Mo ( )lll implies u,u,u k,p H,H,H s
*1:; controlled approximation order 2u = 2k=-2p.

1] |
] o |
KL If 2k-3p = 3, then p = 2u-1 for some integer k and Xk = 3u. Thus
I‘ i |
‘: 3 ] = {M ' M ¢+ M } 1
LA A k,p U+, u+, Houd+t, u+ u+t,u,u+l

For m = 2u, we choose
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b =1 and b = b =0 .
H+1,u+1,u Hou+1,u+1 u+1,u,u+1

Then b satisfies (1°),, (2°),, (3°)  and (4°) in Theorem 1. But, for

o
- + = =
m = 2u+1, (17), implies that bu+1'u+1’u 0; similarly, bu.u*1.u+1
bu+1'u'u+1 = 0. Therefore °k,p has controlled approximation order 2u+1 =
Zk-zp- 1.

If 2k-3p = 4, then p = 2u-2 for some integer 1 and k = 3pu-1. Then

) = {M M M M
k,p u+t, 0,0’ Tu,uet,u’ Tp,u,uet’ u.u.u}

For m = 2u, we choose

1 1
b = b b == b -,
u+t,u,u Moutt,u Moutt,n - 2° Puun T 2
This b satisfies (1°)m. (2°)m' (3°)m and (4°). But, for m = 2u+1, (1°)m
implies Db = 0 similarl b = b = 0. Then invokin
pllie H,u,u+ ! " Yo u+i,u,u H,u+t,n ° g
1° again, we have b +b = 0 hence b = 0. This shows
(17")p again, T TR TR TP TRTRY
that » has controlled approximation order 2u+1 = 2k=-2p-1.

k,p
In case (iii), p = 0. If we had talked about the approximation order,

the result would be trivial. However, for controlled approximation order,
this result is not trivial: We must exhibit amap b : K+ R such that

(1%, (2%, (3%), and (4°) hold. Let

1 if r+s+t = k+2 and min{r,s,t} > 1
b = ( =1 if r+s+t = k+1 and min{r,s,t} > 1

0 otherwise .

Then, for fixed r, s with r+s < k, we have

1 if X = k+2 = (r+s)

b =( =1 {f A = k+1 - (r+s)
r,s,\

0 otherwise .

Hence

} br,s,k =

This proves (3°),. Also, one proves (1%), and (2°), in the same

AN ANS . DA
D RLERLs LESERTES ) AR e
UL S o Pl X : : \ o YOS W SRS AN
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'_:,‘ fashion. As to (4°), we observe that

‘\"-‘
B3 »* .

N Yv,= ) B+ ) b .
G r+s=k+1 r+s<k

‘1.‘.5-

\.‘ -.

The second sum on the right is 0, while r+s = k+1 and min{r,s,t} > 1

+ g
7

Y
\ .V '.-
M UL, ¥

Yo implies that t = 1. But b =1 for r+s = k+1 and t = 1. Hence

o r,s,t

:;::: )‘ bu = k, which verifies (4°). Thus m(k,p) = k+1 fou p = 0.

D

Now we turn to the new result (iv). If k < 2p+2, then it is shown in

N (J,] that

et m(k,p) > 2k-20-2 .

-

- If k > 2p+2, it is also proved there that

\

e ~

s& m(k,p) > k .

‘ )

P : Thus we always have

N,

L% ~

N m(k,p) > min{2k~2p-2,k} .

\“.'

:-,‘{, It remains to prove

DAY -

RN m(k,p) € min{2k-2p-2,k} .

_"‘{o
R First, we prove m(k,p) € k. Suppose to the contrary that m(k,p) > k.
o Let

o
b

-"-4 U := {u; r+s+t = k+1 or k+2, and min{r+s,s+t,t+r} > p+2} .

Then, by Theorem 1, Ok 0 has the same controlled approximation order as
[

'~
;o & =
= g 2= M ruev)

._;.w has. By Theorem 1, there exists a function b : U + R such that (1°)k, (2°)k
WA
- and (3%, and (4°) holds i.e.,

\'

- \. .

oY Yb =0 for any s,t with s+t < k ,
Lt ¢ Y

TS

Y
T“ ) bu = 0 for any r,t with r+¢t < k ,

- N '

{.

IR .

I b =0 for any t,s with t+s < k ,

.-\.-‘ u

(e i t

Ra%s 1
— b #0 .

Y uev u
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We claim that (1°)k, (2°)k and (3°)k imply that all br,a,t = 0,
Since p > 1, we have 2k » 3p+5 > 8; hence k » 4. Thus
min{r+s,s+t,t+r} < 2(r+s+t)/3 € (2k+4)/3 < k .
Suppose b, ¥ 0 for some u. Without loss of any generality, we may assume
s+t € k. Then there exist s, and t, such that br"O'to $ 0,
but b, = 0 for all (s,t) with s+t < s +t,. Note that s,+t, > p+2 >
3; hence '0 » 2 or to ? 2. For the triple (r,so,to), there are two

possibilities: r+sgtt, = kt2 or ktl. If ris, ¢ty = k+2, then r+ao < k

or r+t, € k. If r+t_< k, then by Theorem 1,

0 0
br"O'to + br.lo-1.t° =0 .,
But by the choice of (so,to), b"'O"'to = 0; hence br"O'to = 0.
Similarly, if r+lo < k, then by Theorem 1,
=0 .

br'.O'to + br"O't°-1

= 0; hence D 0. Now

Again by the choice of (lo.to), b, r,8qtg -

"°'t°-1
assume r+sytt, = k+1. In this case, Theorem 1 gives

br*‘:looto + btvﬂolto =0 .
But (r+1)+l°+t° = k+2; hence by what we have proved, br+1,so,t° = 0,

Therefore b

r = 0., This shows that all b_= 0. Thus there is no b
l.olto u

satisfying (1°)k' (2°)k, (3°)k and (4°) simultaneously. Hence
nk,0) € k .
In particular, we have proved, for k > 2p+2,
m(k,p) =k .
Finally, we want to treat the case k < 2p+2. As did [32], we set
0 = 20+2-k, k' := k=30, o' := p~20 .
Then p*' > 1 and k' = 2p'+2, We claim that
min{r,s,t} >0 .

Indeed, we have

-17-
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._1'
g min{s,t} < (s+t)/2 < (k+2-r)/2 ; 7
'
": hence .r
: p+2 < min{r+s,r+t} € r + (k+2-r)/2 = (k+2+4r)/2 . ..-
xi It follows that EQ
:1 r > 2(p+2)-(k+2) = 2p42-k =0 . :
- Also, one proves 8 > d and t > ¢ in the same fashion. Let i}
"i U' := {u; r+s+t < k'+2 and min{r+s,s+t,t+r} > p'+2} . :
"'3 Let F be the mapping given by j
i: F((r,s,t)) = (r-0,8-0,t-0) . g
§ Then F maps U to U'. F {8 injective, obviously. F is also surjective, \
since u € U' implies that (r+c,s+0;t+0) € U. Then b : U+ R satisfies \
Ky
(1°)m. (2°)m' (3°)m and (4°) if and only if beF satisfies i
‘: (1°)m_201 (2°)m_2°. (30)"_20 and (4°). Therefore \3
X mn(k,p)-20 € k' .
;‘: We conclude that "

m(k,p) € 20+4k' = 2k=-2p-2 .

f o

N £ o
P
)

This finishes the proof of Theorem 2.
Remark. We have seen that w; A has approximation order 6 but
’
controlled approximation order only 5. The latter fact means that we cannot .-

find a finite linear combination B of M, (Mu e w; A) and their translates .
[ 4 -

such that the mapping

Tt PP Y p(3)B(*=3) s
sex? .
1 .

is degree-preserving on '5' Nevertheless, there exists B € 7w 5.A with

’

compact support such that 'I'B is degree-preserving on ¥ 5° This can be * ‘
\ ~
proved by using local interpolation on triangles. Denote by {x] the linear :
A-‘ . \
;. functional of evaluation at x; i.e., [x] f := f(x) = f(xq,X,;)s For 3 = o
f (34.35) © 22, 1et :
-18- .
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Q) = j o j =
g Y,5 7% U)o Xy 5 1= 131Dy Ay 5 2= 151D, 2
¥ 2 2 :
( Ya,3 77 BIDyr A5 5 1= 131040, A g 1= 131D )
- 23 1 == 1 om 1 1 o) :::l
: A7,j s= [+ /2,0)],)2, xa,; := [§+(0, /2))0', A9,j s= [3+( Yy, /2)](01 D,) - \1
- From (BZ] we know that there exist By j € ﬂ; p (3= 1.9 3.8 zz) with
s~ ’ !

compact support such that Bi,j = Bi o('-j) and
14

b =§

B 6 L ]
1034,k 1, 3k

AL

(Here § denotes the usual Kronecker sign.) Then for any p € L

-

p=Y)O, pB, _=)) O pB (=3 .
L] 1.35771,5 i3 i,37'%1,0

A

1
.1

o 1
' From the above formula we can easily deduce that there exists B € 15 A with

”

1Y

N compact support such that Tg is degree-~preserving on ws.

<

:: We conjecture that, for any k and p, if m+1 is the approximation
‘l

E order of ﬂ: A’ then there exists B @ w: A with compact support such that

’ ’

X the mapping Tg 1is degree-preserving on "m'
‘4 The author wishes to thank Professor Carl de Boor, who read the original

]

manuscript, for his valuable suggestions.
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